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When we calculate eq 15 with this perturbation force, it 
is easy to show that the WKB treatment yields P(E) 
identical with eq 22, verifying the general conclusion 
concerning the relation of the two theories. The transi­
tion probability for this case is very much different from 
those for the potentials considered above, that P(E) 
for U(r) = A/r2 decreases with the magnitude of the 
change in the oscillator's energy, but as a power rather 
than as the exponential of a power and that there is no 
naturally definable interaction range parameter such as 
a of the exponential potentials. 

There are, of course, other potential functions for 
which such comparison can be made; however, from 
the above results it suffices to conclude that PWKB(E) 
and PQM(E) become identical when E is sufficiently 
larger than A. Therefore, the present analysis and its 
consequent formulas may be found to have at least the 
advantages of simplicity and of generality of method. 
The important steps in the present treatment are to 
formulate r* and to choose an appropriate integration 
path in the saddle-point method for integrals. The 
former step is involved in the evaluation of both ex­
ponential and preexponential parts through U(r*) 
and F(r*), while the latter is only important in the 
evaluation of preexponential part. 

For the one-dimensional case (for which the co­
ordinate may now be represented by x), the exponential 
part of PWKB(E) is identical with that of the three-di­

mensional case, but the preexponential part is some­
what different because the coefficients of Landau's 
wave function \p(x) and Langer's radial function (R(r) 
are different. In Landau's original work, x* is the 
singular point of U(x) and the integration of exp[^_1f(x)] 
is affected along the path which circles x* counterclock­
wise. In the present approach for the one-dimensional 
case, however, we should determine x* from f'(x*) + 
?i[g'(x)/g(x*)] = O= i-e-> t n e saddle point of g(x) exp-
[fir ̂ f(X)], and parameterize the path by x = x* + 
c'z', where z' belongs to the closed interval [at', /3/]. 
Here the primes signify the one-dimensional case. The 
contribution of the integral from a/ to /3 / can then be 
evaluated by application of the Laplace method. Tak­
ing x* to be the singular point of U(x) would leave the 
exponential part of P(E) identical with the present re­
sults in the asymptotic limit, but would make it im­
possible to find the preexponential part. (However, 
the one-dimensional case is trivial, and it is not intended 
to present its solution here.) Any complete theory of 
vibrational transitions due to molecular collision should 
give not only the exponential of P(E), but also the ap­
propriate preexponential part. 
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Abstract: An expression is developed for the temperature dependence of the probability of vibration-translation 
energy transfer in polar molecules assuming the Morse-dipole-quadrupole interaction energy. The development is 
based on a perturbation method which is essentially an extended distorted wave treatment. The angle dependence 
of the interaction between the permanent charges on the collision pairs is explicitly considered by averaging the 
angle-dependent collision integral over all possible rotations of the dipoles. The final expression for the vibrational 
transition probability per collision is obtained as P(T) - /P0(T), where P0(T) is the transition probability that would 
apply in the zero dipole and quadrupole limits and / represents the effect of the permanent charges on the energy 
transfer. It is shown that P(T) can decrease to a minimum and then increase in "a normal fashion" as temperature 
increases for very polar molecules with a small molecular diameter. This anomalous behavior is related to the 
preferred orientation of the colliding molecules at low temperatures (300-6000K). Numerical calculations show 
such behavior in H2O and NH3. In SO2 and CH3Cl the calculation shows a little change in P(T) with T at 300-
5000K. Rotational energy transfer is neglected throughout. 

The temperature dependence of the probability of 
energy transfer P(T) between translational and vi­

brational motions of molecules per collision has been 
discussed theoretically by a number of authors on both 
classical and quantum mechanical grounds.2-4 They 

(1) This work was carried out under Grant AFOSR-68-1354 from 
the U. S. Air Force Office of Scientific Research. 

(2) K. F. Herzfeld and T. A. Litovitz, "Absorption and Dispersion of 
Ultrasonic Waves," Academic Press Inc., New York, N. Y., 1959, 
Chapter 7. 

(3) T. L. Cottrell and J. C. McCoubrey, "Molecular Energy Transfer 
in Gases," Butterworth & Co., Ltd., London, 1961, Chapter 6. 

expressed the temperature dependence by the equation 

P(T) = A(T) exp 3X 
kT 

D^ 
kT 

A " 
IkT 

(1) 

X = [V(m/2) (TraAkT/h)]2 

where A(T) is the preexponential part which is weakly 
temperature dependent, m is the reduced mass of the 
colliding molecules, A is the magnitude of the change in 

(4) K. Takayanagi, Aduan. Atomic MoI. Phys., 1, 149 (1965). 
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the molecule's internal energy due to the transition 
(for a one-quantum transition, A = hv, where v is the 
vibrational frequency in sec-1), D is the depth of the 
potential energy minimum in the interaction, and a 
is the range parameter which occurs when the inter­
action potential as a function of distance r between 
centers of mass of the molecules is represented by an 
exponential form exp( — r/a). h and kT have their 
usual meaning. Actually eq 1 is the result for the 
spherically symmetric interaction U(r) = constant-
exp( — r/a). The correction term D/kT arose from a 
physical argument that the approaching molecules 
are "speeded up" in a potential well of the depth D.b 

Simple repulsive potentials are useful for calculations 
of the collision properties of gases at high temperatures 
where the attractive forces are not important and the 
molecular interactions are governed by valence or ex­
change forces. However, it has been shown that the 
attractive forces contribute significantly to the energy-
transfer process at ordinary temperatures.6-9 For the 
Morse potential U = D[exp( — r/a) — 2 exp( — r/2a)], 
we showed that the temperature dependence of the 
transition probability by9 

™-W-£+4-#+iS£-+&] 
(2) 

where the second and third terms in the exponent 
represent the effect of the attractive energy — 2D exp-
( — r/2a) of the Morse potential. If the colliding mole­
cules strongly attract each other, these terms can play 
an important role in controlling the over-all energy-
transfer process. Another well-known potential for 
the calculation is the "exp-6" function, which has been, 
for example, applied in the calculation of P(T) in nitro­
gen and chlorine molecules by Takayanagi.10 He 
concluded that the short-range repulsive force had the 
major effect in the transition; the attractive term, how­
ever, cannot be simply neglected, because it affects the 
slope of the repulsive part of the potential on which 
P(T) depends sensitively. There are, of course, other 
intermolecular potential functions for which the prob­
ability could be calculated.4'9 

For polar molecules, however, the two-term po­
tentials such as the Lennard-Jones (LJ) and Morse 
functions are inadequate, and explicit account has to 
be taken of the interaction of the permanent charges on 
the colliding molecules. For HCl, de Wette and 
Slawsky11 concluded that the dipole-dipole interaction 
is important. This type of interaction also is known 
to be important for other molecules such as sulfur 
dioxide12 and CH3Cl.13-16 The interaction of the 

(5) R. N. Schwartz and K. F. Herzfeld, J. Chem. Phys,, 22, 767 
(1954). 

(6) E. E. Nikitin, Opt. i Spektroskopiya, 6, 141 (1959); Opt. Spectry. 
(USSR), 6, 93 (1959). 

(7) R. E. Turner and D. Rapp, / . Chem. Phys., 35, 1076 (1961). 
(8) H. Shin, ibid., 41, 2864 (1964). 
(9) H. Shin, ibid., 42, 59 (1965). 
(10) K. Takayanagi, Sci. Rept. Saitama Univ., A3, 1 (1958). 
(11) F. W. de Wette and Z. I. Slawsky, Physica, 20, 1169 (1954). 
(12) P. G. Dickens and J. W. Linnett, Proc. Roy. Soc, (London), 

A243, 84 (1957). 
(13) F. I. Tanczos, J. Chem. Phys., 25, 439 (1956). 
(14) P. G. Dickens and A. Ripamonti, Trans. Faraday Soc, 57, 735 

(1961). 
(15) A. R. Blythe, T. L. Cottrell, and A. W. Read, ibid., 57, 935 

(1961). 

permanent charges on the molecules is strongly orienta­
tion dependent. Since the explicit angle dependence of 
the interaction makes calculations of transition prob­
abilities excessively difficult, the above investigations 
used the angle-averaged potential (the Krieger func­
tion) 

U = 4D[(<r/r)12 - (ajrf] - 2</2//-3 (3) 

i.e., the combination of the LJ(12-6) potential UL](r) 
and the angle-averaged dipole-dipole interaction energy, 
where ULJ(<r) = 0 and d = /j,2/2Da\ n being the dipole 
moment. The Krieger potential has been used largely 
because calculations of P(T) for angle-dependent 
potentials are very difficult, but even for this potential 
no explicit form of P(T) has been reported. Although 
it considers the importance of the dipole-dipole inter­
action, the orientation dependence of the intermolecular 
energy transfer cannot be examined with this potential, 
since it is an orientation-averaged function. At ordi­
nary temperatures, where the angle dependence of the 
interaction of permanent charges on molecules can be 
particularly important, we must start the calculation 
with an angle-dependent interaction energy. 

The most outstanding property of intermolecular 
(vibration-translation) energy transfer in polar gases is 
that P(T) for certain molecules decreases to a minimum 
from a large value and then increases in a normal 
fashion as the temperature increases.16-18 Theoretical 
formulations as they have been developed so far are in­
capable of accounting for this kind of anomalous tem­
perature dependence of P(T). At low temperatures the 
colliding molecules can take preferentially a particular 
relative orientation which is favored for energy trans­
fer. Therefore, we must take into account more rig­
orously in the calculation the angle dependence of the 
interaction of permanent charges; i.e., we calculate 
/^ ,angles) , where E is the initial relative energy and 
the "angles" represents the relative orientation of the 
colliding molecules, before averaging over energies and 
angles. 

The purpose of the present paper is to develop an 
expression for the temperature dependence of the prob­
ability of intermolecular energy transfer in polar mole­
cules considering the angle-dependent dipole-dipole 
and dipole-quadrupole interactions. In order to calcu­
late P(T) it will be necessary to make specific assump­
tions about the interaction energy, the wave functions, 
and the introduction of spherical harmonics in calcu­
lating the collision integral. In section II the interac­
tion energy will be assumed as a sum of the Morse 
potential, dipole-dipole, and dipole-quadrupole inter­
action energies. In section III, we introduce the 
WKB wave functions to calculate the collision integral. 
The collision integral will be calculated indirectly from 
that for the Morse potential alone and that for the LJ-
dipole-quadrupole interaction energy. In section IV, 
we average the terms in the collision integral represent­
ing the charge interaction over the rotation of the 
dipoles. It is important to emphasize here that calcu­
lated values of P(T) shown in section V are not reliable 
because of uncertainties in the formulation of the 

(16) J. D. Lambert and R. Salter, Proc. Roy. Soc. (London), A234, 78 
(1957). 

(17) P. G. Corran, J. D. Lambert, R. Salter, and B. Warburton, 
ibid., S244, 212 (1958). 

(18) F. D. Shields, J. Chem. Phys., 46, 1063 (1967). 
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perturbation energy shown in section II. However, 
these uncertainties affect only the weakly temperature-
dependent preexponential factor of P(T). Therefore, 
the numerical analysis correctly represents the tem­
perature dependence of intermolecular energy transfer 
which is the prime objective of the present investiga­
tion. 

II. Interaction Energy 

In any quantum mechanical theory oi inelastic mo­
lecular-scattering processes, the transition probabilities 
or cross sections are found to depend on the matrix 
elements of the interaction energy. If x represents the 
displacement of the oscillator from its equilibrium 
position, the interaction, in the case of interest here, 
may be assumed linear in the internal displacement 

V(r,x, angles) = U(r,0, angles) — xF(r, angles) (4) 

This expression may also be considered as the leading 
part of the expansion of V about x obtained neglecting 
higher order terms, and thereby assuming that the 
amplitude of vibration is small compared to the range 
of the potential. Such expansion can be a satisfactory 
procedure if V is a function of r — x. The function 
F is the perturbing force, which is in general difficult to 
give in an explicit form for polyatomic molecules. If 
V were a function of r — x alone at given molecular 
orientations, then F would be simply U'. The force 
which determines the relative translational motion, 
— U', does not consist only of — F, but also of an addi­
tional force which would act between the colliding mole­
cules even if no force acted on the oscillator itself. As 
shown in section III, however, while not much is known 
about F, its effects appear only in the preexponential 
part of the transition probability. Since the tempera­
ture dependence of intermolecular energy transfer is 
dominated by the exponential part of P(T), to which 
the present discussion is restricted, the detailed nature 
of F is relatively unimportant here. Furthermore, the 
matrix element of x introduced in eq 4, or of other 
forms which may be assumed, is independent of initial 
energies (or temperature, if an average over a Boltzmann 
distribution is performed). In eq 4, the function U(r,0, 
angles) is a typical angle-dependent (unperturbed) 
interaction energy, determining the relative translational 
motion of the molecules. 

The intermolecular potential model adopted is the 
Morse potential with added dipole-dipole and dipole-
quadrupole interaction terms 

U = U(r,0, angles) = £>[exp( - r/a) -

2exp(-r/2a)] - (MV3)S - (3Mfi/2r<)A (5) 

where ^ and Q are dipole and quadrupole moments, 
respectively, and g and h are the orientation dependent 
factors19 

g(ri,r2,w) = 2 cos Ti COsT2 — sin T1 sin T2 cos w (6-1) 

h(Ti,T2,<») = 1A(COs Ti - cos T2) X 
(2 sin Ti sin T2 cos w — 3 cos Ti cos T2 — 1) (6-2) 

where co = co2 — W1 and the angles are defined in Figure 
1. The above expressions (eq 6) are correct for mole-

(19) J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular 
Theory of Gases and Liquids," John Wiley and Sons, Inc., New York, 
N. Y., 1964, pp 27, 35, 225-226. 
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X 

Figure 1. Points 1 and 2 represent the centers of two molecules 
1 and 2. The solid line through 1 indicates the axis of the dipole 
and the cylindrically symmetric quadrupole of molecule 1, and the 
line through 2 indicates the similar axis for the second molecule. 
The intermolecular distance is r, and the angles r u T2, U1, and u2 
serve to define the orientations of the two axes. 8U <t>i, B1, and <fo 
describe the direction of the axes. 

cules with axially symmetric charge distribution. In 
the calculation of P(T) the change of these factors with 
orientation must be carefully considered, for it is only 
the Boltzmann principle that, by favoring positions of 
low energy, prevents these terms from vanishing when 
summed over all angles. Equation 5 is composed of 
four parts. All parts may be dependent on the relative 
orientation of the two molecules as well as on their 
distance apart, but such orientation dependence may 
be neglected for those forces which only fluctuate in 
magnitude but never change sign, i.e., the first two terms. 
Thus, the main part of the interaction energy which is 
the Morse function is a spherically symmetric potential, 
so that usual perturbation schemes for the calculation 
of P(T) for such potential may be used here. As we 
shall see below (section IV), the collision integral can 
be solved as a product of the angle-independent part 
(i.e., from the Morse potential) and the angle-dependent 
part (i.e., from the 3-4 inverse potential). The rotation 
of the axes of the dipoles represented in Figure 1 will 
affect only the latter part. 

Rowlinson20'21 assumed the 12-6-3-4 inverse potential 
for the calculation of the second virial coefficient of 
water vapor 

U = 4D[(tryV)12 - (a/rf - (a/ryt*g - (<r/ryU*h] (7) 

where t* = ix2/4Da\ p.* = 2>nQI%D<r\ and <r is U(a) 
= O that would apply in the zero dipole and quadrupole 
limits. Inverse power laws have been favorite repre­
sentation of the molecular interactions partly because 
the evaluation of their collision integrals is relatively 
simple. However, it often happens that an exponential 
function gives a better representation of the interaction 
than does an inverse power at small intermolecular 
separations, but the evaluation of the collision integrals 
for an exponential interaction requires special mathe­
matical techniques since now the over-all interaction 
energy is a sum of the exponential and inverse power 
(3-4) laws. 

For very high collision energies, where the repulsive 
forces are more important than the attractive forces, it 

(20) J. S. Rowlinson, Trans. Faraday Soc, 47, 120 (1951). 
(21) Also see, N. Bjerrum, KgI. Danske Videnskab. Selskab Mat. Fys. 

Medd., 27, 1 (1951); Science, 115, 385 (1952). 
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is a fairly good approximation to replace the angle-de­
pendent interaction by the expression which corresponds 
to the interaction of two-point dipoles (in the dipole-
dipole interaction) which are perfectly aligned. This 
allows us to write the Krieger potential by neglecting 
the dipole-quadrupole interaction. Although mo­
lecular quadrupole moments are normally about 1010 

times nuclear moments, they are not easy to measure 
directly owing to our inability to produce sufficiently 
large macroscopic field gradients. Interaction energies 
of about 1O-23 erg can be obtained, while for dipoles in 
fields of 10 esu the energy is about 10-17 erg. At a 
point of a few angstrom units from a polar molecule, the 
field gradient is about 1014 esu, whereas the field is 
about 106 esu. Thus molecular quadrupoles will con­
tribute significantly to intermolecular forces. 

III. Vibrational Transition Probability 

Because of the complicated angle and distance de­
pendences of the terms in eq 5, the calculation of vi­
brational transition probabilities and related quantities 
is excessively difficult. In earlier investigations,13-14 

such calculations have been attempted for the Krieger 
potential. However, for any inelastic collision such 
averaging prior to the calculation of the collision inte­
gral is unrealistic or perhaps it is totally unacceptable 
for polar molecules. The colliding molecules may trans­
fer their energies more easily when they interact with 
a "particular orientation." For example, it is thought 
that the longitudinal vibration of a linear molecule is 
most efficiently excited or deexcited when the velocity of 
relative motion is along its axis (i.e., a colinear collision). 
For nonlinear molecules, say triatomic molecules, the 
bending vibration can be effectively excited or deex­
cited when the two (identical) molecules are approach­
ing parallel to each other. There are also preferred 
orientations of the permanent charges as pointed out 
above; if such orientations are favorable for the energy 
transfer, the transition probability can be very large at 
this particular angle or angles. When we average the 
interaction energy before the calculation of the collision 
integral, it would mean that we weighted all orientations 
equally for the energy transfer and no emphasis to par­
ticular orientations is given; perhaps this is a satis­
factory treatment for completely spherical molecules 
or for collisions at high temperatures. For polar mole­
cules particularly at low temperatures in which the 
permanent charges tend to be distributed along par­
ticular directions, we must consider the importance of 
the angle dependence of the vibrational transition prob­
ability. Therefore, the vibrational transition prob­
ability per collision (or per second) should be formu­
lated as a function of the initial relative energy E and 
the orientation of the molecular symmetry axes or the 
direction of the dipoles, P(E, angles). The thermal 
average transition probability should still be a function 
of the angles, P(T, angles), for such cases. Finally, we 
must average P(T, angles) over all possible rotations of 
the dipoles to obtain P(T). If we started with the calcu­
lation ofP(T) with an angle-dependent Morse potential, 
P(E, angles) is a function of both the angles of molec­
ular rotations and the rotations of the axes of the perma­
nent charges, which are not identical with each other 
unless the molecules are linear. For this type of po­

tential the calculation is considerably difficult (but not 
impossible). 

At low temperatures, molecules will not suffer a 
violent change in the vibrational motion during en­
counter. As to the rotational state, this statement may 
not be very accurate, but it will still be convenient to 
start with expanding the complete wave function of 
the collision system in terms of the free rotational and 
vibrational wave functions of molecules. Provided the 
duration of the encounter is longer than the period of 
molecular rotation and vibration, and provided the 
distortion is nearly adiabatic, the perturbed stationary 
state (PSS) method422 can be used to treat the collision 
systems. Unless the energy of relative motion is high, 
this method is favored over others such as the distorted 
wave (DW) method4'22 for treating rotational transi­
tions in collisions between strongly polar molecules 
and vibrational transitions of a molecule with a rela­
tively small force constant. The probability P(E, 
angles), where the angles resulted only from the inter­
action between the permanent charges on the colliding 
molecules, that the molecule (or oscillator) will undergo 
the transition from internal state <f>(x) to 4>'(x), while the 
incident molecules' relative motion changes from an 
energy state E to E' ( = E + A) due to the transition, 
may be calculated by the DW method. Alternatively, 
it may be calculated by the PSS method with the assump­
tions that the perturbation of the oscillator energy 
levels and wave functions by — xF(r) is adequately 
given by first-order perturbation theory. Note that, 
as will be discussed below, we essentially use here the 
perturbation energy —xF(r) rather than —xF(r, angles) 
in the calculation of the transition probability. In 
either the PSS or DW methods, it follows from eq 4 
that the probability of intermolecular energy transfer 
per collision is given by the following formula8'23 

^ , a n g l e s ; ; ) = ^ V £ ( £ + A ) f o j _ ^ / X 

2 

(r,E + &)4>'(x)[V(r,x, angles)]<Xx)(R/r,£) dxdr = 

KWE% + A}^E> angles)]2 (8) 

where the second relation defines the collision integral 
Pj(E, angles). The wave function (Rj(r,E) is the well-
behaved solution of 

[LT. — - ̂ > ^ > -" <» 
which is normalized so that as r -*• » . 

&lr,E) ~ cos [~r~ r + 6J (10) 

and (Rj(O1E) = 0, where 5 may depend on E and on j 
but is independent of r. The oscillator wave function 
4>(x) may be assumed by either the harmonic or Morse 
oscillator wave functions. In the above formulation 
we neglected the transfer of rotational energy compared 
to that of vibrational energy. Every collision will then 
be characterized by the quantum number j of the rela-

(22) N. F. Mott and H. S. W. Massey, "The Theory of Atomic Col­
lisions," 3rd ed, Clarendon Press, Oxford, England, 1965, Chapter 13. 

(23) C. Zener, Phys. Rev., 37, 556 (1931). 
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tive angular momentum, which has the same value both 
during the approach and recession of the colliding 
molecules. 

As noted in the formulation of the interaction energy 
above, the angle dependence of the collision integral is 
caused by the interaction between the permanent 
charges, and we now must average this dependence over 
all possible rotations of the coordinate. For this 
purpose we introduce the rotational functions contain­
ing spherical harmonics 

for the rotation of the rth dipole, and Sj = (2irN1)~
1/'iPj, 

for the relative motion, where P's are the Lengendre 
functions and N's are the normalizing constants. The 
angles O1 and (f>t are for the directions of the charge axes 
shown in Figure 1, and r, 6, and <j> are the spherical 
coordinate of the radius vector from the center 1 to 2 
also shown in Figure 1. Therefore, the orientation-
averaged expression of the vibrational transition prob­
ability can be formulated by 

P(E) 
Sm 

JII Yi*Yt*St* X 
H W E(E + AX 

[^1(E, angles)]2S;Y2Y1 dfldfiadGi (11) 

where dfi, d^i, and dQ2 are the elements of solid angles 
for relative motion and the orientation of the axes: 
sin 9 d0d0, sin O1 d0id<£i, and sin B2 d92dcp2. 

It should be noted that we could have averaged P(E, 
angles; j) simply over the elements of solid angles with­
out the consideration of the rotational functions Y's. 
However, we believe that the above procedure is phys­
ically preferred since eq 11 is a quite general form. 
For example, if we express the transition probability as 

Wi}{E, angles)]*^Y2Y1 dQdfi2dQi * (12) 

we could determine the effect of rotational transitions 
on the vibrational energy transfer, where the primed 
functions andy' designate the values after the transition. 
If we neglect the transfer of rotational energy compared 
to that of vibrational energy and sum over all possible 
final states, j ' , I1, and I2', keeping a fixed initial state, 

j , I1, I2, we may write this expression as24 

Sm err 

^ " UWEiE+ A ) / / / Y > ' Y ° " S " X 

[&(£•, angles)] 2S1Y2 Y1 dQdfi»dQi (13) 

which is identical with eq 11. 
Assuming a Boltzmann distribution of the initial 

energies we define the (thermal) average transition prob­
ability at any temperature as 

P(T) = C P(E)(EJkT) exp(-E/kT) d(E/kT) (14) 

By substituting eq 11 into eq 14, we obtain 

Sm 
P(T) = JII Y1*Y2*Sj*if" X 

(HkT)2JJJ " " ~3 [J0 \E + A 

exp( - E/kT)[pj(E, angles)]2 dE}Sj Y2 Y1 dQdQ,d& (15) 

Now, let us evaluate the collision integral, which 
takes the following form for the interaction energy given 
by eq 4 

Pj(E, angles) = 
/ » TO 

x I (R}'(r,E + A)F(r, angles)(R/r,£) dr (16) 

where the matrix element is x = / - » < £ ' (x)x 4>(x) dx. 
In the region of strong interaction the attractive part 
of F inserted in eq 16 is insignificant compared to the 
repulsive part. Of course, the effect of the attractive 
forces acting between the colliding molecules is impor­
tant in determining the probability of intermolecular 
energy transfer, but the effect is essentially controlled 
by the attractive terms in the exponent of the wave func­
tions which contains the unperturbed interaction energy 
U.26 The wave functions always vary much more rapidly 
compared to the perturbing force itself at small r, 
and the effect due to the attractive forces in the wave 
functions directly enters in the exponent of the transi­
tion probability, whereas the effect in F enters in the 
preexponential part which is weakly energy or tem­
perature dependent. Therefore, we neglect the attrac­
tive part in F in eq 16 but not that in the wave func­
tions; i.e., the perturbing force is then independent of 
the angles. The angle-dependent force could have been 
obtained if we assumed an angle-dependent repulsive 
term in eq 5. 

We assume the wave functions by the following WKB 
forms26-28 

%(r,E) = ^7.X [2m(Ue - £)]v* 

exp H-1I V2m(Ue - E) dr (17-1) 

6i/(r,E') = 
[2m(Ue - £")]Vl 

exp • % -

1TVi m(Ue - E') dr (17-2) 

(24) Reference 2, pp 295-296, 305-307. 

where c = (2TTmEjS)1^, c' = (2irmE'IS)l/i, and r0 

is the largest root of (Ue — E) = 0. The effective po­
tential is 

Ue = U(r,0, angles) + h%J^ + } ) (18) 
2mr2 

The evaluation of the r integral given in eq 16 for the 
effective potential 

Ue = 4D[(a/ry* - (a/r)«] + ~ ~ ^ (19) 

(25) H. Shin, / . Chem. Phys., 47, 3302 (1967). 
(26) L. Landau and E. M. Lifshitz, "Quantum Mechanics," Pergamon 

Press. Inc., London, 1958, pp 178-183. 
(27) B. Widom, Discussions Faraday Soc, 33, 37 (1962). 
(28) H. Shin, / . Chem. Phys., 46, 744 (1967). 
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has been shown in ref 28. The same procedure cannot 
be employed here because the interaction energy is now 
a mixture of the exponential and inverse-power terms. 
An indirect way of solving the r integral for such a 
potential function is to evaluate the r integral for the 
12-6-3-4 function followed by the replacement of 
the terms resulted from the LJ potential by those of the 
Morse potential. This matching procedure yields an 
expression for the exponential range parameter a_m 
terms of the LJ potential parameters:8 a = (<r/y/ir)-
[r(Vi2)/r(1/i2)](4D/£')1/'!. By substituting the wave 
functions into eq 16 and using the Eulerian integral of 
the first kind,29 the r integral is found as follows 

$j(E, angles) = T 
'E(E + A)' 

2m 

•fj*i/,p*-
x X 

6XPL V 2 S „ 5 n\ Y(i + -A2) 
(20) 

1, 2, 3, I = 0, V2, Vs, 3A, Ve, 1, • . . 

and 

ao = (42J)1Z-O-/12 

ai / s = -Ia0V D/6 

a,/t = -3(4£>)2/«a0w*A/4 

a'/« = -5(4D)'/'a0t*g/6 

Oy. 

CIi 

24 m<r2(4Z))Vl 

l3a0D/72, . . . 

where £/*, C/7*, and F * are the functions evaluated at 
r = r*. 

F o r the 12-6-3-4 function, the leading par t of the 
collision integral is exp(—cons tan t / ^ 1 2 ) , whereas the 
Bol tzmann factor is e\p(—E/kT). Therefore, the ex­
ponential par t of the E integral given in eq 15 will take a 
maximum value at E = E*, which is the root of the first 
derivative of the exponent set equal to zero. After 
a tedious calculation, this energy which we shall call 
" the most probable energy for the t rans i t ion" is found 
to be 

7* = XLJ + 
93 

T(Vi2)IX V12)Za v, 

13 / r (y 1 2 ) \ Y^yA 

9 3 i \ r c / 1 2 ) / W 
xu1A + 399 

X 

T(Vi2)IXVi2)Va 
X L J V S + 

32 T(y12)T( 
665T(Vi2)T( 

Vi2) (a>/\ 
10A2)Uo/ 

X 

X L / / I + 
85 T(V12)T(V 

1463T(V12)T(1V: 

JL(1IV(Ei 
114\98/ \T(7 

XLJVt + 
/is)\flo / 

Vi2)/ U o / 

1596 oi 

1729a0 

(21) 

where 

X L J 
T( 1VI2) (4D)1/"V2^o-AA:r" 

L T(V12) h 

Vis 

The E integral can be evaluated at E = E* by using the 
Laplace method for integrals.30 The result is 

(29) E. T. Whittaker and G. N. Watson, "Modern Analysis," 
University Press, Cambridge, England, 1962, Chapter 12. 

(30) N. G. de Bruijn, "Asymptotic Methods in Analysis," North-
Holland Publishing Co., Amsterdam, 1961, Chapter 4. 

r / E 

Jo V ^ -o 1E+A 

Y Tt2H U*1/2F*2 

cxp(-E/kTH3j(E, angles)]2 dE = 

LAV2, m W 
4 ^ £ * v 2 e x p i ^ + 

1/T(V 1 2 )VVZ)XLJ , _ J _ / T ( V 1 2 ) T ( V 1 2 ) N »*_ 
42VT(V12)/ kT ^ 21VAT(V 1 2)T( 1V 1 2)Zi) 0- 3 A 

0''1Xu1'* , 3(4)'yT(V1 2)T(V1 2)/ nQ \Dy'Xu'*h _ 
kT "*" 448 T(V12)T(V12)VZ)(TV kT 

5 T(V12)T(V12) '*%/ + D' 
168T(V12)T(1V12) 

1 9 / 1 3 N2ZT(V12) 

2 Vl596 / Vr(7A2)/ kT 

X L J 
1A 

+ mo- 2 (4D) l A J^ r 
4 / J Z)_ A ) 

6kT IkT) 
(22) 

In the exponent of eq 22, the first, second, sixth, and 
seventh terms resulted from the LJ(12-6) function in U. 
When these terms are replaced by the corresponding 
terms of the Morse potential through the matching 
relation between a and a, we obtain the result for the 
Morse 3-4 function. For the simple Morse potential 
the transition probabili ty is, when we assume U'* — 
f* 

W) - (^Ys= X 
) * * 

exp 
' v ^ w f y,at(-l)

nAnT(n + i - V2) 
. ft ,• = <,, = ! n\ T(i + 1) 

'El/' 

(23) 

where the coefficients are a0 = a, ai/, = —aw D, a\ 
= 0, a»/j = aD3/"-/2, . . . . The temperature average 
of this expression results in 

W) 

exp 

4w(4irmaAy f x 

3 v w Jx Ur, 
3 X + 4 VDx~ + 

1A 
X 

16Z) 

&r r^r + 3Tr2^r 2/tr. 
(24) 

This equation is then based on the assumption of a 
spherically symmetrical field and might therefore be ex­
pected to apply to polar gases only at higher tempera­
tures, where the molecules are in rapid rotat ion. 

Before we write down the result for the Morse-3-4 
function, we now explicitly consider the role of the 
rotat ion of the dipoles. The fifth term in the exponent 
of eq 22 represents the effect of the centrifugal quasi-
potential energy. This term may be written 

5 T(V12)T(V12) 

.84T(V12)T(1V12)Vo-

h%j + 1) 
2mr*2kT 

where r* is "the most probable distance for the energy 
transfer" for the inverse-power potential 

V A 
2D 
m 

[i + 0(h)] 

The factor in the square brackets of the term is not 
significantly different from unity; we therefore write 
the exponential containing this term with good approx­
imation 

exp 
KVU + 1)" 
2mr*ikT exp[-«/ ( ; '+ I)] 
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The average transition probability for the Morse-3-4 
interaction energy may then be expressed by eq 25, 

P(T) 
Air ( 4imia&\-

J\ h* J 
r2f -X- exp 

16Z) _A_ 
37T2ZcT IkT. 

_3X + 

x -KkT 

£ ( 2 / + l)pexp[-p;U + I)]X 

JJJ 7 l Yt Sj ;eXPU21 V 2 " U ; T(V12)F(^12)J
 X 

"3(4)2/Y2i\v,r(V12)r(Vi2) m^->+ 
M e y ^ A x 1 A 

448 V19J rc/12)r(9/12). X 

AlSjYtY1 dmOidSh (25) 

where the contribution of a term with S1 = (2wN/)-ll2Pj 
has been weighted by the factor24 (2/ + l)p exp[—pj-
(J + !)]• The first term in the last exponent is due to the 
dipole-dipole interaction and the second the dipole-
quadrupole interaction, both still being functions of the 
orientation angles Ti, T2, W1, and w2. Equation 25 may 
be written in the following alternative form 

P(T) = 2 ( 2 / + I)P exp[-p/(; + I)] X 

/ / / 
Y1* F2*Sf[P(T, angles)]S, Y2 Y1 dQdQjdQi (25a) 

IV. Average Over Angles 

The probability of a state lu mt of the axis of the 
dipole and the symmetric quadrupole of the z'th mole­
cule is given by24 pt exp[—PiU(U + I)], where / = 1, 2 
and pi = h2/2IikT, I{ being the moment of inertia. 
Therefore, the angle-averaged form is 

P(T) = P0(T) JIwj + l)p exp[-p/U + I)] X 

PJ2 

2TN, 
sin 8 ddda ////?? P1P2 CXpI-P1I1(I1 + 1) 

(Pi mi)2 (Pi m ! ) 2 

pMh + l]^.2^>2^r x 

exp(ag + j3h) sin B1 6B1A^1 sin B2 d82dcj>2 (26) 

where a and /3 are the coefficients of g and h given in 
eq 25, respectively. This is a formal expression for the 
case of the collision between two diatomic molecules. 
For symmetric top molecules, the weighting factor 
should contain two parts, one representing the / de­
pendence and the other the K dependence, where K 
= 0, ± 1 , ±2 , . . ., ±/ , so that the factor is Pipt' exp-
[-PiU(U + 1) — Pi'Kt2], for the /th molecule, where p / 
= (V^A — l/lB)h2/2kT and p now contains IB with Ic 

= /B > JA. When pi is small compared to unity, we 
can replace, with good approximation, the Kt sum by an 
integral to obtain unity; then the result is identical 
with eq 26. The evaluation of eq 26 can be greatly 
simplified if we use Unsold's theorem, which states 
that the sum of all the probability distribution for a 
given /is a constant31 

+i (P,'")2
 = 21+ 1 

me_i27rW" 4TT 

When P1 and p2 are small compared to unity, we can 
replace the / sums by integrals, and obtain 1J2 for each. 
Equation 26 then becomes 

P(T) = PdT)^JJE(2/ + l)pexp[-py(y + I)] X 

2 ^ r sin 8 dddcfrJJf fexp(a£ + $h) X 

sinfli dfl^-1 sin B2 dd2^A (27) 
27T 2ir) 

The integration of the angle-dependent part is an 
excessively difficult task, if not impossible. It can be 
explicitly evaluated only when certain "physical" 
relations are assumed. To carry out the integrations, 
we simplify the functions g and h in the exponent of 
eq 26 as follows. The inclination angles are related 
with the directions of the coordinates as 

cos T1 = cos d cos B1 + 

sin 8 sin B1 cos (^1 — cf>) (28-1) 

cos T2 = cos 8 cos B2 + 

sin 8 sin 82 cos (<f>2 — 4>) (28-2) 

The maximum value of g is + 2 for T1 = T2 = 0 or 
T1 = T2 = 7r; the minimum value is —2 for Ti = 
0,T2 = W or T1 = -IT, T2 = 0. The maximum value of 
h is also + 2 but it appears at T1 = 0, T2 = w, and the 
minimum value, which is —2, occurs at Ti = it, T2 

= 0. For linear molecules the colinear alignment is 
most effective in transferring the energy associated with 
the longitudinal motion. Even for nonlinear molecules, 
it is likely that the energies can exchange more ef­
ficiently when the colliding molecules' relative orienta­
tions are not very much "out of phase." From the 
favorable orientations of dipoles and quadrupoles the 
following alignments can be most effective for the energy 
transfer 

A - B A - B 

A A 

/ / 
\ \ 

C C 

A B 

A C B 
\ / / \ 

B A C 

(31) A. Unsold, Ann. Phys., [4] 82, 355 (1927). 

The dipole direction will be -»—»• in the first case and 
Il in the second (i.e., the colinear and parallel collisions 
are most effective). Then, for an excitation of the lowest 
vibrational motion, the term sin Ti sin T2 cos u in 
both h and g can be neglected compared to the others 
in the first approximation. We introduce B1 = 8 + 
S1, B2 = 8 + 52, and </>i' = <j>x — <f>, 02 ' = $2 — <t> in eq 
28, 5j and </>/ being small quantities of the first order. 
With these substitutions anji with the use of trigono­
metric identities we can approximate cos Ti ~ 1 — 1J2-
(S1

2 + ^ ' 2 sin2 0) and cos T2 ~ 1 - 1A(S2
2 + <?V2 sin2 B). 

The function g can therefore be approximated in the 
form 1 — (angle-dependent terms). On the other hand, 
for h the factor (cos Ti — cos T2) is small, the leading 
term being dependent on the angles. Thus h contains 
only terms dependent on the angles; i.e., the leading 
term is a function of the angles. With these simplifica­
tions the angle-dependent part exp(ag + fih) can be 
readily evaluated by extending the integrals from — « 
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to + oo because of the steepness of the exponential 
parts containing 5< and 4>/. 

exp(2a) f f f fexp{-^(S1
2 + 0i '2 sin2 9) -

«(52
2 + fa'2 sin2 9) +/3[S1

2 - S2
2 + ( V 2 -

«,'«) sin2 0]}sin2 fl d f c d S , ^ ' ^ - ' = - 5 2 G 2 L (29) 
27T 27T 4 ( a r — p^) 

Equation 27 is then 

P(T) = P0(T) 
exp(2a) 

16(a2 - /3 olf/20' + I)P X 

exp[-fl/U + l ) ] ^ ~ r sin 9 d0d0 (30) 

When p is sufficiently small compared to unity, the j 
sum can be replaced by an integral.28 Since the inte­
grations over 9 and 4> result in unity, they sum is simply 
unity. Hence, the final expression for the average 
vibrational transition probability for the present model 
is 

P(T) = 
16(a2 - /32AZcT", 

£-) exp _ 3 x , 4Vx-P • 
kT wkT 

^ - + -A- + 2« 
37T2ZtJ 2JkT 

or 

where 

P(T") = /P0(T) 

(31) 

(31a) 

47r/47rwaA\2 

/ = 
exp(2a) 

16(a2 - ,32) 

This is the average vibrational deexcitation transition 
probability per collision with the magnitude of the 
change in the molecule's vibrational energy A; if it is a 
one-quantum transition (1 -»• 0), then A = hv. To 
obtain the form of the exponential part appropriate 
to an excitation of the molecule rather than to a de-
excitation, we have merely to replace AjIkT by —A/ 
IkT. 

V. Discussion 

In the second relation of eq 31 the factor Po(T), the 
transition probability calculated from the Morse po­
tential, is an increasing function of temperature and it 
gives an adequate description of the energy transfer 
process, within the limits of our present knowledge of 
intermolecular forces, in nonpolar molecules. How­
ever, the contribution due to the interaction of the 
permanent charges on the colliding molecules (i.e., 
the factor/) can either increase or decrease or even it 
can first decrease and then increase when temperature 
increases. If a molecule has large dipole moment but a 
small molecular "diameter" a that would apply in the 
zero dipole and quadrupole limits, then exp(2a) can be 
very large at low temperatures, whereas a2 is only mod­
erately large. On the other hand, a2 — /32 can become 
small if the magnitude of a is comparable to /3; there­
fore, / is very large in such case. As temperature in­
creases, exp(2a) rapidly becomes small so that / can 
decrease. When temperature becomes still high, both 

a and (3 can be small, i.e., the difference between a2 

and /32 is also small, so tha t /may now increase. From 
eq 31, at low temperatures, the part P0(T) then tends 
to raise the over-all magnitude of P(T), whereas / 
tends to lower P(T) as temperature increases. Thus, 
if the change of / with T is strong enough to oppose 
(numerically) the normal temperature dependence of 
Po(T), the average transition probability may decrease 
to a minimum value and then increase in a normal 
fashion as temperature increases. Physically, this 
kind of anomaly can result because of the oriented 
collisions at low temperatures. The colliding pairs 
may take preferentially a "particular" relative orienta­
tion when they come close to each other at low tem­
peratures, and at this orientation the energy transfer 
may take place more efficiently than in other orienta­
tions. As temperature increases, it is difficult to main­
tain such orientation owing to the increased freedom 
in molecular motions; consequently the transition 
becomes less probable than at low temperatures. At 
still higher temperatures, however, the molecular orien­
tation may become completely random. Then, the 
factor exp( — 3x/kT) in eq 31, which rapidly increases 
with temperature, dominates all other factors in the 
exponential part; P(T) now increases with temperature. 

From the expression for a, which represents the 
dipole-dipole interaction, we see that the magnitudes 
of M and a control the variation of/. For very polar 
molecules with relativity small a, a is in general large 
at low temperatures and the T dependence of P(T) 
can be anomalous. For example, for H2O a is 2.65 A 
and M is 1.84 D, and for SO2 a = 4.026 A and M = 1.7 D. 
For the former system we may predict that the calcu­
lation of eq 31 can show a minimum in the P(T)-T 
relation, whereas for the latter it is doubtful because a 
is quite large as for most polyatomic molecules. Also, 
HCN and ClCN have large values of both ju and Q, 
and the anomalous temperature dependence of P(T) 
for these gases may be predicted. For NH3 the dipole 
moment is 1.44 D and a is 2.60 A; for CH3Cl the cor­
responding values are 1.87 D and 4.15 A. Therefore, 
if the application of eq 31 is made, the anomalous 
behavior may result for NH3. For CH3Cl there may 
not be the minimum value of P(T) since a is large; 
i.e., a is not large enough to cause the variation of / 
with temperature to counteract numerically the varia­
tion of P0(T). Of course, these qualitative predic­
tions may not be correct since the quadrupole mo­
ment can significantly alter / . For most of the mole­
cules mentioned above, no reliable value of the quad­
rupole moment is available32 at present, so that an 
"accurate" calculation o f / a n d in turn P(T) given by 
eq 31 is not possible. 

There are experimental evidences for such tempera­
ture dependence of P(T) in certain polar molecules. 
Lambert and his coworkers16,17 have reported that the 
probability of vibrational transition of SO2, CH3Cl, 
CH3Br, and CH3F has a minimum as a function of 
temperature (but we note that in their report the ex­
istence of such minimum for CH3Br and CH3F is some­
what doubtful). They interpreted this anomalous 
behavior as due to increasing predominance of oriented 
collisions which are specially favorable for energy 
transfer between polar molecules at low temperatures. 

(32) A. D. Buckingham, Quart. Rev. (London), 13, 183 (1959). 
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Recently Shields18 reported that in pure SO2 the transi­
tion probability per second ZP(T), where Z is the colli­
sion frequency and which in a single-relaxation time 
case is approximately equal to the reciprocal of the 
relaxation time, decreases between 298 and 400 0K and 
then increases slightly between 400 and 5000K. It is 
also interesting to note that in the experimental work 
for CO2-H2O by Eucken and his coworkers,3834 and 
most recently by Lewis and Lee,36 there is an increase in 
the probability of energy transfer with falling tempera­
ture. The transition probability was found to increase 
steadily as the temperature fell from 673 to 3730K, 
and then to decrease between 373 and 2930K, which is 
the reverse of the variation observed for SO2 and the 
chloromethanes. This behavior has been explained by 
Widom and Bauer36 in terms of chemical affinity be­
tween the interacting pairs. 

For collision systems involving polar molecules any 
rigorous interpretation of the effect of the permanent 
charges using eq 31 can be made only when both the 
dipole and quadrupole moments are known. Most 
of the molecular quadrupoles so far "measured" have 
been determined indirectly by studying the interactions 
of molecules; however, the values deduced are uncer­
tain, for they depend upon doubtful assumptions con­
cerning the nature of the intermolecular force field. 
In making numerical computations of P(T) additional 
deterrents have been uncertainties in the form of the 
perturbation energy and the evaluation of the matrix 
element x in the preexponential factor. Some problems 
involved in the perturbing energy and their effect on 
P(T) has been discussed above. The evaluation of the 
matrix elements for polyatomic molecules is very 
difficult. If we use the harmonic oscillator wave func­
tions the matrix element for the 1 -* 0 transition is 
simply X10 = fe/(2MA)1/j, where M is the reduced mass 
of the oscillator. With this expression the preexpo­
nential factor of eq 31 is 

kT. - ^'['KSXT)" X 
kT 

•A 
(32) 

However, the mass M for a polyatomic molecule is a 
function of the definition of the normal coordinate and 
it is in general very difficult to estimate.3,37 Cottrell 
and Ream38 showed a procedure which can be used to 
estimate M for polyatomic molecules. 

As we have discussed above, eq 4 may be obtained 
by expanding V(r,x, angles). For example, for the 
collision between a diatomic molecule AB and an inci­
dent particle C, the instantaneous separation between 
the collision pair in a colinear collision is r — (mA/mA 

+ mB)x = r — yx, so that if the molecule is homo-
nuclear we have r — x/2. Therefore, if we want to use 
eq 31 for this system, then we should multiply the 
preexponential factor by Vi- When mA « mB and 
the incident particle is approaching the side of B, y 
can be a very small factor. For polyatomic molecules, 
at the preferred orientations of the dipoles, the similar 
situation may apply when we assume V(r — yx, angles), 

(33) A. Eucken and E. NUmann, Z. Physik. Chem., B36, 163 (1937). 
(34) A. Eucken and L. KUchler, Z. Tech. Physik., 19, 517 (1938). 
(35) J. W. L. Lewis and K. P. Lee, J. Acoust. Soc. Am., 38, 813 (1965). 
(36) B. Widom and S. H. Bauer, / . Chem. Phys., 21, 1670 (1953). 
(37) C. B. Moore, ibid., 43, 2979 (1965). 
(38) T. L. Cottrell and N. Ream, Trans. Faraday Soc, 51, 1453 

(1955). 

•08 

Figure 2. Plots of log Z10 vs. T~1/K Experimental data are: 
X, CH3F; O, SO2; • , CH3Cl; A, CH3Br from Lambert and Salter;16 

and • , SO2 from Shields.ls (Note the ordinate represents log Zi0). 

where y may now depend on the definition of the 
normal coordinate, and eq 31 should be multiplied by 
y"-. However, all these uncertainties essentially do not 
affect the temperature dependence of P(T). The only 
possible effect that can result from these uncertainties 
is the perturbing force which finally results in part in 
the factor (x/kT)'-'* in the preexponential part. There­
fore, throughout the following numerical illustration, 
the absolute magnitude of P(T) is not reliable, but the 
temperature dependence is correct in the domain of ap­
plicability of eq 11, and our following discussion refers 
entirely to this aspect. 

As discussed above, H2O has a large fj. and a small a 
so that the exponential factor exp(2a) can be very large 
at low temperatures. We first consider this system 
for numerical illustration. The quadrupole moment for 
this molecule is estimated as 2 X 10~2(i esu. The lowest 
vibrational frequency is 1594.7 cm - 1 and the depth of 
the potential well is taken to be 3SOk. In Figure 2 
the plot of log Z10 vs. T~1/3 is made, where Z10 

= IjP(T) for the 1 -*• 0 transition and is the number of 
collisions required to deexcite a quantum of vibrational 
energy. For this molecule a minimum value of log 
Zio around 6000K is seen. No experimental data to 
substantiate this numerical result have been reported. 
Because of the important effect of the terms in the 
exponent of eq 31 resulting from the attractive energy 
and the term A/2kT which is large for "stiff" molecules, 
the variation of log Zw with T~'/3 is linear only above 
15000K. From 400 to 8000K logZio varies only slightly 
with temperature. 

Since for SO2 no reliable data on the quadrupole mo­
ment are available, we attempt to show the importance 
of the molecular orientations with / ' = exp(2a)/16a2. 
The calculated values of log Z10 for v = 519 cm - 1 are 
plotted in Figure 2 along with available experimental 
data. The chosen value of D is 363k. Although we do 
not find the maximum value, the variation of logZio be­
tween 300 and 400° is very slight. Using the same 
factor / ' , we also calculate log Z10 for CH3Cl-CH3Cl 
with the values v = 732 cm"1, \x = 1.87 D, a = 3.94 A, 
and D = AlAk. The variation of log Z10 with tem-
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Figure 3. Plots of the factors/,/', and/" for H2O as a function of 
temperature. 

perature is very similar to that for SO2. No maximum 
value of the collision number is seen, but the change of 
log Zio with temperature is very small between 300 
and 4000K. Perhaps, the maximum may show up in 
the plot, if we introduce / rather than / ' in the calcu­
lation. 

For NH3, the estimated value of Q is 1.3 X 10-26 esu; 
other constants are v = 932.5 cm - 1 and D = 320&. 
Although the absolute value of log ZJ0 is significantly 
small, the variation is very similar to water molecules. 
A very slow change in log Zi0 is seen between 400 and 
8000K with the maximum value at about 5000K. 

We show the variation of/ with temperature in Fig­
ures 3 and 4 for H2O and NH3, respectively. The factor 
/var ies very rapidly between 300 and 6000K and then 
reaches the minimum value at about 14000K for H2O 
and 9000K for NH3. Around the minimum the T 
variation is not significant and it slowly increases as 
temperature increases. The importance of the dipole-
quadrupole interaction can be seen by comparing / ' 
with / . The difference between these two factors is 
about 2 for H2O and about 4 for NH3 at low tempera­
tures. As temperature increases the difference becomes 
only slight, particularly for H2O. It is interesting to 
show the variation of the factor /" = exp(2a) with tem­
perature. This is the factor which will appear in P(T) 
if we started the calculation of the transition probability 
with the Krieger potential. As shown in the two 
figures, this exponentially decreasing function of tem­
perature is always very large compared to / and / ' . 
Because of this continuously (and very rapidly) de­
creasing variation as temperature is increased, the factor 
exp(2a) alone cannot numerically counteract the T 
variation OfP0(T

1) in eq 31 to yield a maximum in the 
log Z10 vs. r _ 1 / ! plot, although it is possible that this 
factor alone can make the variation very slight at low 
temperature if /J, is large and a is small. From the 
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Figure 4. Plots of the factors /, / ' , / " for NH3 as a function of 
temperature. 

difference b e t w e e n / a n d / " o r / ' a n d / " , it is obvious 
that the Krieger potential always over-estimates the 
probability of intermolecular energy transfer in polar 
molecules over the temperature range considered here. 
This is not surprising since the calculation of P(T) 
based on this potential implicitly assumes that all 
dipole orientations are equally effective in transferring 
energies between the vibrational and translational 
motions. 

V. Concluding Remarks 

The collisions systems which were chosen here to 
illustrate the temperature variation of P(T) are by no 
means exhaustive. Equation 31 does, however, show 
the minimum in P(T) at low temperatures for polar 
molecules with a small molecular "diameter" and large 
dipole and quadrupole moments, and it is clear that in 
the collision systems considered there must be a strong 
tendency for oriented collisions to take place be­
tween 300 and 6000K. Theories that have been 
developed so far are incapable of accounting for such 
anomalous temperature dependence of intermolecular 
energy transfer in polar molecules. If we assume 
spherically symmetric over-all interaction energies to 
calculate P(T), it is not possible to show this type of 
anomaly. If we average the angle-dependent in­
teraction energy between the permanent charges over 
all possible molecular orientations before calculating 
the collision integral, the resulting form of P(T) will 
not also show such temperature dependence; rather 
the form will seriously over-estimate the probability. 
Therefore, we must carry along the angle dependence 
of the interaction energy throughout and obtain the 
transition probability as a function of the angles; fi­
nally, we must average the angle dependence over differ­
ent dipole rotations to obtain P(T). 

We could have applied eq 31 to other systems to 
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show the variation of P(T) with T, but any rigorous 
calculation of the equation requires the values of Q 
which is not known for many molecules. The objec-

The study of relatively weak hydrogen-bonding or 
charge-transfer complexes has relied mainly upon 

spectroscopic techniques.2-4 Limited solubility or 
complications due to spectral absorption by the solvent 
can restrict their application. In those cases the meth­
ods of solution thermodynamics may be used.2,4 The 
nonideal behavior, as measured by activity coef­
ficients,5,6 osmotic coefficients, or apparent molecular 
weights by sedimentation equilibria,7 is interpreted in 
the context of various simple reactions. Under favor­
able circumstances, temperature derivatives of the 
evaluated free energies have been used to determine 
heats and entropies of reactions. 

A less familiar approach has made use of mixing 
calorimetry.8-10 In some cases sufficient information 
can be obtained to determine AG0, AH0, and AS0 with­
out auxiliary information; in other cases the combina­
tion of heats of dilution with osmotic coefficient data 
provides a route for AH0 evaluations.11 

In this paper we want to show how two types of 
solution calorimetry experiments, heats of infinite 
dilution and heats of infinitesimal dilution, can be used 
for the study of certain simple reactions involving weak 
interactions. 

(1) National Science Foundation research participation for College 
Teachers Fellow, Northwest Missouri State College, Maryville, Mo. 

(2) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond," 
W. H. Freeman and Co., San Francisco, Calif., 1960. 

(3) G. Briegleb, "Molekulverbindungen and Koordinationsverbin-
dungen in Einzeldarstelluggen Elektronen-Donator-Accetor-Komplexe," 
Springer-Verlag, Berlin-Wilmersdorf, Germany, 1961. 

(4) L. J. Andrews and R. M. Keefer, "Molecular Complexes in Or­
ganic Chemistry," Holden-Day, Inc., San Francisco, Calif., 1964. 

(5) P. O. P. Ts'o, P. I. S. Melvin, and A. C. Olson, J. Am. Chem. Soc, 
85, 1289 (1963). 

(6) A. D. Adler, J. A. O'Malley, and A. J. Herr, Jr., / . Phys. Chem., 
71, 2896 (1967). 

(7) E. T. Adams, Jr., and D. L. Filmer, Biochemistry, 5, 2971 (1966). 
(8) P. R. Stoesser and S. J. Gill, / . Phys. Chem., 71, 564 (1967). 
(9) S. J. Gill, M. Downing, and G. F. Sheats, Biochemistry, 6, 272 

(1967). 
(10) T. H. Benzinger and Charlotte Kitzinger in "Temperature: Its 

Measurement and Control in Science and Industry," Vol. 3, Part 3, 
J. D. Hardy, Ed., Reinhold Publishing Corp., New York, N. Y., 
1963, p 43. 

(11) J. A. Schellman, Compt. Rend. Trav. Lab. Carlsberg, Ser. CMm., 
29,223(1955). 

tive of the present investigation has been, however, to 
develop an expression which could be applied to explain 
the anomalous behavior in certain polar molecules. 

Heats of Infinite Dilution 

When a solution containing m moles of solute and 
1 kg of solvent is diluted by an infinite amount of sol­
vent, the heat of this dilution is expressed by — m^L. 
The quantity <pL is the relative apparent heat content. 
We assume this heat effect is due entirely to the dis­
sociation of complex species into monomeric forms. 
Equilibria conditions govern the concentration of 
various species in the solution of molality m. For, 
example, self-association reactions might occur of the 
form with appropriate equilibrium constants and 
enthalpies of reaction 

A + A T^" A2 K2, AH2
0 

(D 
A + A2 ~^~ A3 K3, AHz0, etc. 

In general, insufficient precision of measurements or in­
complete validity of describing the nonideal behavior 
by such schemes precludes evaluation of more than one 
or two constants. 

The heat of infinite dilution, —m(pL, can be written 
formally in terms of molal concentrations as 

m^L = (A2)AiZ2
0 + (A3)(AH2

0 + AH3
0) + • • • (2) 

or 

m<pL = K2(AyAH2
0 + K2K3(Ay(AH2

0 + AH3
0)+ ••• 

If all AHn
0 values are equal to AH°, then a simpler 

result9-11 can be obtained with the definitions of the 
osmotic coefficient $ 

<ph = (1 - *)A//° (3) 

This equation is applicable to any variety of reactions 
described by (1) for equal AH° values. Relative osmotic 
coefficients could be obtained by applying this equation 
in reverse. 

If more restrictive conditions are imposed within 
eq 1, two special cases show similar concentration 
dependence of <pL. For a dimerization reaction 

- - a-f - '»m"W" <« 
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Abstract: Expressions are developed for determining thermodynamic parameters of several simple reaction 
mechanisms from the combination of two types of solution calorimetry experiments, heats of infinite dilution and 
heats of infinitesimal dilution. The advantages and limitations of combining these measurements are discussed. 
Application of the method is given for the cases of urea self-association and for purine self-association. In both 
cases it is shown that the thermodynamic quantities derived from the two types of heat measurements agree with 
those obtained from studies over a range of concentrations. The advantage of the procedure is the determination 
of weak interaction parameters on relatively dilute solutions. 
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